Review Article

Current Concepts of Spine Robotic Assistance versus Freehand Techniques in Spine Surgery: A Systematic Review and Meta-Analysis

Abstract

Background: Robotic assistance in spinal surgery has completely changed the face of the practice over recent decades. The concept of pedicle screw fixation, introduced in the early 1950s, has grown to be one of the cornerstones of treatment for various spinal pathologies. The purpose of this study is to evaluate surgical outcomes and different treatment modalities in spinal pathologies by comparing robotic-assisted techniques with conventional freehand techniques.
Methods: A systematic review and meta-analysis were performed based on the PRISMA guidelines. A literature search was conducted using major databases such as ScienceDirect and PubMed/MEDLINE. Statistical analyses were performed using IBM SPSS software, R software, and Microsoft Excel. Peer-reviewed studies published in the English language up to January 2025 were included.
Results: Results were compiled from a total of 2,592 patients who underwent robotic neuronavigation-guided spinal surgery, reflecting the precision and efficacy of state-of-the-art robotic technologies in spinal surgery. Of these, 2,219 patients were treated with robotic assisted pedicle screw placement, while 2,294 patients were treated with conventional freehand or fluoroscopy-guided techniques.
Conclusion: Our findings have shown that robotically assisted spine surgery is indeed more accurate, with reported rates of up to 90% precision in pedicle screw placement compared to freehand techniques.

1. Farber SH, Pacult MA, Godzik J, Walker CT, Turner JD, Porter RW, et al. Robotics in Spine Surgery: A Technical Overview and Review of Key Concepts. Front Surg. 2021;8:578674. doi: 10.3389/fsurg.2021.578674. [PubMed: 33708791]. [PubMed Central: PMC7940754].
2. Staub BN, Sadrameli SS. The use of robotics in minimally invasive spine surgery. J Spine Surg. 2019;5(Suppl 1):S31-s40. doi: 10.21037/jss.2019.04.16. [PubMed: 31380491]. [PubMed Central: PMC6626754].
3. Foley KT, Smith MM, Rampersaud YR. Microendoscopic approach to far-lateral lumbar disc herniation. Neurosurg Focus. 1999;7(5):e5. doi: 10.3171/foc.1999.7.6.6. [PubMed: 16918212].
4. Zawar A, Chhabra HS, Mundra A, Sharma S, Kalidindi KKV. Robotics and navigation in spine surgery: A narrative review. J Orthop. 2023;44:36-46. doi: 10.1016/j.jor.2023.08.007. [PubMed: 37664556]. [PubMed Central: PMC10470401].
5. Malham GM, Wells-Quinn TA, Nowitzke AM, Mobbs RJ, Sekhon LH. Challenges in contemporary spinal robotics: encouraging spine surgeons to drive transformative changes in the development of future robotic platforms. J Spine Surg. 2024;10(3):540-7. doi: 10.21037/jss-24-4. [PubMed: 39399084]. [PubMed Central: PMC11467282].
6. Yan K, Zhang Q, Tian W. Comparison of accuracy and safety between second-generation TiRobot-assisted and free-hand thoracolumbar pedicle screw placement. BMC Surg. 2022;22(1):275. doi: 10.1186/s12893-022-01723-8. [PubMed: 35840958]. [PubMed Central: PMC9288055].
7. Shi C, Tong Y, Harris L, Owusu-Sarpong S, Goldstein J. Proficiency Development and Learning Curve in Robot
Assisted Spine Surgery Using the ExcelsiusGPS® System: Experience From a Single Institution. Global Spine J.
2025;15(3):1517-25. doi: 10.1177/21925682241242449. [PubMed: 38635306]. [PubMed Central: PMC11572081].
8. Li C, Li H, Su J, Wang Z, Li D, Tian Y, et al. Comparison of the Accuracy of Pedicle Screw Placement Using a Fluoroscopy Assisted Free-Hand Technique with Robotic-Assisted Navigation Using an O-Arm or 3D C-Arm in Scoliosis Surgery. Global Spine J. 2024;14(4):1337-46. doi: 10.1177/21925682221143076. [PubMed: 36455162]. [PubMed Central: PMC11289529].
9. Li Y, Liu H, Xue A, Chen J, Zhou W, Li Q, et al. Clinical Outcome Analysis of Robot-Assisted Pedicle Screw Insertion in the Treatment of Ankylosing Spondylitis Complicated with Spinal Fractures. World Neurosurg. 2024;184:e331-e9. doi: 10.1016/j.wneu.2024.01.126. [PubMed: 38296040].
10. Zhan J, Xu W, Lin J, Luan J, Hou Y, Wang Y, et al. Accuracy and Safety of Robot-Assisted versus Fluoroscopy-Guided Posterior C1 Lateral Mass and C2 Pedicle Screw Internal Fixation for Atlantoaxial Dislocation: A Preliminary Study. Biomed Res Int. 2022;2022:8508113. doi: 10.1155/2022/8508113. [PubMed: 36132077]. [PubMed Central: PMC9484877].
11. Cao Z, Xuan T, Yu M, Luo R, Lu W. Clinical application of TIANJI orthopedic surgical robot in patients treated by adolescent idiopathic scoliosis surgery. Med Equip. 2021;34(17):3-6. doi: 10.3969/j.issn.1002-2376.2021.17.002.
12. Yuan W, Meng X, Cao W, Zhu Y. Robot-Assisted Versus Fluoroscopy-Assisted Kyphoplasty in the Treatment of
Osteoporotic Vertebral Compression Fracture: A Retrospective Study. Global Spine J. 2022;12(6):1151-7. doi:
10.1177/2192568220978228. [PubMed: 33375861]. [PubMed Central: PMC9210249].
13. Le XF, Shi Z, Wang QL, Xu YF, Zhao JW, Tian W. Rate and Risk Factors of Superior Facet Joint Violation during Cortical Bone Trajectory Screw Placement: A Comparison of Robot-Assisted Approach with a Conventional Technique. Orthop Surg. 2020;12(1):133-40. doi: 10.1111/os.12598. [PubMed: 31863573]. [PubMed Central: PMC7031568].
14. Lin S, Wang F, Hu J, Tang LY. Comparison of the Accuracy and Safety of TiRobot-Assisted and Fluoroscopy-Assisted Percutaneous Pedicle Screw Placement for the Treatment of Thoracolumbar Fractures. Orthop Surg. 2022;14(11):2955-63. doi: 10.1111/os.13504. [PubMed: 36177873]. [PubMed Central: PMC9627052].
15. Tian Y, Zhang J, Chen H, Ding K, Liu T, Huang D, et al. A comparative study of spinal robot-assisted and traditional fluoroscopy-assisted percutaneous reduction and internal fixation for single-level thoracolumbar fractures without neurological symptoms. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2020;34(1):69-75. doi: 10.7507/1002-1892.201905057. [PubMed: 31939238]. [PubMed Central: PMC8171836].
16. Peng YN, Tsai LC, Hsu HC, Kao CH. Accuracy of robot-assisted versus conventional freehand pedicle screw placement in spine surgery: a systematic review and meta-analysis of randomized controlled trials. Ann Transl Med. 2020;8(13):824. doi: 10.21037/atm-20-1106. [PubMed: 32793669]. [PubMed Central: PMC7396236].
17. Yu T, Jiao JH, Wang Y, Wang QY, Jiang WB, Wang ZH, et al. Robot-assisted versus navigation-assisted screw placement in spinal vertebrae. Int Orthop. 2023;47(2):527-32. doi: 10.1007/s00264-022-05638-0. [PubMed: 36422704]. [PubMed Central: PMC9877038].
18. Villeneuve LM, Lee B, Cornwell B, Nagarajan M, Smith ZA. Robot-Assisted Thoracolumbar Fixation after Acute Spinal Trauma: A Case Series. Cureus. 2022;14(11):e31832. doi: 10.7759/cureus.31832. [PubMed: 36579235]. [PubMed Central: PMC9788792].
19. Vardiman AB, Wallace DJ, Crawford NR, Riggleman JR, Ahrendtsen LA, Ledonio CG. Pedicle screw accuracy in clinical utilization of minimally invasive navigated robot-assisted spine surgery. J Robot Surg. 2020;14(3):409-13. doi: 10.1007/s11701-019-00994-3. [PubMed: 31321615]. [PubMed Central: PMC7237509].
20. Lee NJ, Zuckerman SL, Buchanan IA, Boddapati V, Mathew J, Marciano G, et al. Is There a Difference in Screw Accuracy, Robot Time Per Screw, Robot Abandonment, and Radiation Exposure Between the Mazor X and the Renaissance? A Propensity-Matched Analysis of 1179 Robot-Assisted Screws. Global Spine J. 2023;13(5):1286-92. doi: 10.1177/21925682211029867. [PubMed: 34235996]. [PubMed Central: PMC10416583].
21. Zongze L, Yongquan C, Guanjie Z, Yongjian Z, Yuhui C, Hui J, et al. Early postoperative efficacy of a fully automated orthopedic robotic system-assisted percutaneous pedicle
screw fixation for isthmic spondylolisthesis. Comput Assist Surg (Abingdon). 2024;29(1):2399502. doi:
10.1080/24699322.2024.2399502. [PubMed: 39263920].
22. Ringel F, Stüer C, Reinke A, Preuss A, Behr M, Auer F, et al. Accuracy of robot-assisted placement of lumbar and sacral pedicle screws: a prospective randomized comparison to conventional freehand screw implantation. Spine (Phila Pa 1976). 2012;37(8):E496-501. doi: 10.1097/BRS.0b013e31824b7767. [PubMed: 22310097].
23. Kim HJ, Lee SH, Chang BS, Lee CK, Lim TO, Hoo LP, et al. Monitoring the quality of robot-assisted pedicle screw fixation in the lumbar spine by using a cumulative summation test. Spine (Phila Pa 1976). 2015;40(2):87-94. doi:
10.1097/brs.0000000000000680. [PubMed: 25575085].
24. Tian W, Fan M, Liu Y. Pedicle screw insertion in spine: A randomized controlled study for robot-assisted spinal
surgery. Epic Ser Health Sci. 2017;1:23-7. doi: https://doi.org/10.29007/nbg2.
25. Schizas C, Thein E, Kwiatkowski B, Kulik G. Pedicle screw insertion: robotic assistance versus conventional C-arm fluoroscopy. Acta Orthop Belg. 2012;78(2):240-5. [PubMed: 22696996].
26. Schatlo B, Molliqaj G, Cuvinciuc V, Kotowski M, Schaller K, Tessitore E. Safety and accuracy of robot-assisted versus fluoroscopy-guided pedicle screw insertion for degenerative diseases of the lumbar spine: a matched cohort comparison. J Neurosurg Spine. 2014;20(6):636-43. doi: 10.3171/2014.3.Spine13714. [PubMed: 24725180].
27. Hwang YH, Ha BJ, Kim HC, Lee BH, Park JY, Chin DK, et al. A Propensity Score-Matched Cohort Study Comparing 3 Different Spine Pedicle Screw Fixation Methods: Freehand, Fluoroscopy-Guided, and Robot-Assisted Techniques. Neurospine. 2024;21(1):83-94. doi: 10.14245/ns.2448036.018. [PubMed: 38569633]. [PubMed Central: PMC10992644].
28. Lonjon N, Chan-Seng E, Costalat V, Bonnafoux B, Vassal M, Boetto J. Robot-assisted spine surgery: feasibility study through a prospective case-matched analysis. Eur Spine J. 2016;25(3):947-55. doi: 10.1007/s00586-015-3758-8. [PubMed: 25575857].
29. Solomiichuk V, Fleischhammer J, Molliqaj G, Warda J, Alaid A, von Eckardstein K, et al. Robotic versus fluoroscopy-guided pedicle screw insertion for metastatic spinal disease: a matched-cohort comparison. Neurosurg Focus. 2017;42(5):E13. doi: 10.3171/2017.3.Focus1710. [PubMed: 28463620].
30. Feng S, Tian W, Sun Y, Liu Y, Wei Y. Effect of Robot-Assisted Surgery on Lumbar Pedicle Screw Internal Fixation in Patients with Osteoporosis. World Neurosurg. 2019;125:e1057-e62. doi: 10.1016/j.wneu.2019.01.243. [PubMed: 30790729].
31. Fayed I, Tai A, Triano M, Sayah A, Makariou E, Voyadzis JM, et al. Robot-Assisted Percutaneous Pedicle Screw Placement: Evaluation of Accuracy of the First 100 Screws and Comparison with Cohort of Fluoroscopy-guided Screws. World Neurosurg. 2020;143:e492-e502. doi: 10.1016/j.wneu.2020.07.203. [PubMed: 32758652].
32. Katsevman GA, Spencer RD, Daffner SD, Bhatia S, Marsh RA, France JC, et al. Robotic-Navigated Percutaneous Pedicle Screw Placement Has Less Facet Joint Violation Than Fluoroscopy Guided Percutaneous Screws. World Neurosurg. 2021;151:e731e7. doi: 10.1016/j.wneu.2021.04.117. [PubMed: 33962072].
[PubMed Central: PMC8609466].
33. Cui GY, Han XG, Wei Y, Liu YJ, He D, Sun YQ, et al. Robot-Assisted Minimally Invasive Transforaminal Lumbar Interbody Fusion J Orthop Spine Trauma. 2025; 11(4): 147-55. in the Treatment of Lumbar Spondylolisthesis. Orthop Surg. 2021;13(7):1960-8. doi: 10.1111/os.13044. [PubMed: 34516712]. [PubMed Central: PMC8528995].
34. Gao S, Lv Z, Fang H. Robot-assisted and conventional freehand pedicle screw placement: a systematic review and meta-analysis of randomized controlled trials. Eur Spine J. 2018;27(4):921-30. doi: 10.1007/s00586-017-5333-y. [PubMed: 29032475].
35. Su XJ, Lv ZD, Chen Z, Wang K, Zhu C, Chen H, et al. Comparison of Accuracy and Clinical Outcomes of Robot-Assisted Versus Fluoroscopy-Guided Pedicle Screw Placement in Posterior Cervical Surgery. Global Spine J. 2022;12(4):620-6. doi: 10.1177/2192568220960406. [PubMed: 32975454]. [PubMed Central: PMC9109572].
36. Zhang RJ, Zhou LP, Zhang HQ, Ge P, Jia CY, Shen CL. Rates and risk factors of intrapedicular accuracy and cranial facet joint violation among robot-assisted, fluoroscopy-guided percutaneous, and freehand techniques in pedicle screw fixation of thoracolumbar fractures: a comparative cohort study. BMC Surg. 2022;22(1):52. doi: 10.1186/s12893-022-01502-5. [PubMed: 35148749]. [PubMed Central: PMC8832770].
37. Wang L, Li C, Wang Z, Li D, Tian Y, Yuan S, et al. Comparison of robot-assisted versus fluoroscopy-assisted minimally invasive transforaminal lumbar interbody fusion for degenerative lumbar spinal diseases: 2-year follow-up. J Robot Surg. 2023;17(2):473-85. doi: 10.1007/s11701-022-01442-5. [PubMed: 35788970].
38. Yson SC, Sembrano JN, Sanders PC, Santos ER, Ledonio CG, Polly DW, Jr. Comparison of cranial facet joint violation rates between open and percutaneous pedicle screw placement using intraoperative 3-D CT (O-arm) computer navigation. Spine (Phila Pa 1976). 2013;38(4):E251-8. doi: 10.1097/BRS.0b013e31827ecbf1. [PubMed: 23197012].
39. Lee NJ, Lombardi JM, Qureshi S, Lehman RA, Jr. Robot-Assisted Spine Surgery: The Pearls and Pitfalls. J Am Acad Orthop Surg. 2025;33(2):e81-e92. doi: 10.5435/jaaos-d-24-00692. [PubMed: 39284034].
40. Haik NV, Burgess AE, Talbot NC, Luther P, Bridges JR, Folse M, et al. Robotic Systems in Spinal Surgery: A Review of Accuracy, Radiation Exposure, Hospital Readmission Rate, Cost, and Adverse Events. World Neurosurg. 2025;195:123721. doi: 10.1016/j.wneu.2025.123721. [PubMed: 39864806].
Files
IssueVol 11 No 4 (2025) QRcode
SectionReview Article
DOI https://doi.org/10.18502/jost.v11i4.20284
Keywords
Spinal Cord Injuries Surgical Navigation Systems Computer-Assisted Surgery Robotic Surgical Procedures Rehabilitation

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Encarnación-Santos D, Chmutin G, Chmutin E, Bozkurt I, Chaurasia B. Current Concepts of Spine Robotic Assistance versus Freehand Techniques in Spine Surgery: A Systematic Review and Meta-Analysis. J Orthop Spine Trauma. 2025;11(4):147-55.