Review Article

Minimally Invasive Fixation in Osteoporotic Vertebral Fractures: A Review Article

Vertebral fracture fixation

Abstract

There are several surgical strategies which have been proposed to treat the osteoporotic patient with vertebral fracture, ranging from vertebral body cement augmentation, percutaneous/mini-open short segment pedicle screw fixation, and cortical bone trajectory screw to kyphotic deformity correction surgery. Minimally invasive spine surgery has the potential benefits of faster recovery, reduced blood loss, less postoperative wound pain, lower infection risk, and shorter length of hospital stay. Novel surgical techniques such as percutaneous instrumentation fixation, cortical bone trajectory technique, screw cement augmentation, and vertebral body augmentation are developed. However, various complications have been reported, including pedicle fracture, instrumentation loosening, adjacent-level disc degeneration with herniation, and progressive junctional kyphosis. The purpose of this review was to outline various advancements in minimally invasive spinal surgery for patients with osteoporosis. Minimally invasive surgical techniques for fixation including percutaneous instrumentation, cortical bone trajectory technique, screw cement augmentation, and vertebral body augmentation have benefited patient with osteoporosis. Studies and discussions about short-segment pedicle screw fixation (one level above and below the fracture level) have shown that it provides enough stability for thoracolumbar burst fractures. There are also complications, including cement embolism, adjacent vertebral fracture, neuraxial anesthesia, and infection, which have been observed with the above technique. With the advancement of instrument and technique, the complication rate decreased in recent studies. Minimally invasive fixation still has many advantages for patients with osteoporosis. Many of these studies and strategies only have evidence from biomechanical and cadaveric studies and require further clinical trials to establish their clinical efficacy.

1. Karmakar A, Acharya S, Biswas D, Sau A. Evaluation of percutaneous vertebroplasty for management of symptomatic osteoporotic compression fracture. J Clin Diagn Res. 2017;11(8):RC07-RC10. doi: 10.7860/JCDR/2017/25886.10461. [PubMed: 28969223]. [PubMed Central: PMC5620864].

2. Ballane G, Cauley JA, Luckey MM, El-Hajj FG. Worldwide prevalence and incidence of osteoporotic vertebral fractures. Osteoporos Int. 2017;28(5):1531-42. doi: 10.1007/s00198-017-3909-3. [PubMed: 28168409].

3. Gupta P, Garg S, Mittal N, Garg S, Jindal M. Evaluation of bone mineral density in patients undergoing total hip arthroplasty and total knee arthroplasty. J Orthop Spine Trauma. 2022;8(1):9-14. doi: 10.18502/jost.v8i1.9039.

4. Bjerke BT, Zarrabian M, Aleem IS, Fogelson JL, Currier BL, Freedman BA, et al. Incidence of osteoporosis-related complications following posterior lumbar fusion. Global Spine J. 2018;8(6):563-9. doi: 10.1177/2192568217743727. [PubMed:
30202709]. [PubMed Central: PMC6125926].

5. Watanabe K, Katsumi K, Ohashi M, Shibuya Y, Hirano T, Endo N, et al. Surgical outcomes of spinal fusion for osteoporotic vertebral fracture in the thoracolumbar spine: Comprehensive evaluations of 5 typical surgical fusion techniques. J Orthop Sci. 2019;24(6):1020-6. doi: 10.1016/j.jos.2019.07.018. [PubMed: 31445858].

6. DeWald CJ, Stanley T. Instrumentation-related complications of multilevel fusions for adult spinal deformity patients over age

65: Surgical considerations and treatment options in patients with poor bone quality. Spine (Phila Pa 1976). 2006;31 (19 Suppl):S144-S151. doi: 10.1097/01.brs.0000236893.65878.39. [PubMed: 16946632].

7. Dong S, Li Z, Tang ZR, Zheng Y, Yang H, Zeng Q. Predictors of adverse events after percutaneous pedicle screws fixation in patients with single-segment thoracolumbar burst fractures. BMC Musculoskelet Disord. 2022;23(1):168. doi: 10.1186/s12891-022-05122-1. [PubMed: 35193550]. [PubMed Central: PMC8864915].

8. Glattes RC, Bridwell KH, Lenke LG, Kim YJ, Rinella A, Edwards C. Proximal junctional kyphosis in adult spinal deformity following long instrumented posterior spinal fusion: incidence, outcomes, and risk factor analysis. Spine (Phila Pa 1976). 2005;30(14):1643-9. doi: 10.1097/01.brs.0000169451.76359.49. [PubMed: 16025035].

9. Echt M, Ranson W, Steinberger J, Yassari R, Cho SK. A systematic review of treatment strategies for the prevention of junctional complications after long-segment fusions in the osteoporotic
spine. Global Spine J. 2021;11(5):792-801. doi:

10.1177/2192568220939902. [PubMed: 32748633]. [PubMed Central:

PMC8165922].

10. Ryu WHA, Cheong M, Platt A, Moses Z, O'Toole JE, Fontes R, et al. Patient satisfaction following minimally invasive and open surgeries for adult spinal deformity. World Neurosurg. 2021;155:e301-e314. doi: 10.1016/j.wneu.2021.08.047. [PubMed: 34419662].

11. S. Narain A, Y. Hijji F, H. Yom K, T. Kudaravalli K, Singh K. The role of minimally invasive techniques in the treatment of thoracolumbar trauma. J Orthop Spine Trauma. 2016;2(3):e10129. doi: 10.5812/jost.10129.

12. Masoumi F, Nabian MH, Sharafi MH. Minimally invasive technique for treatment of osteoid osteoma: A case of anatomically critical lesion in an adolescent patient. J Orthop Spine Trauma. 2021;7(2): 74-6. doi: 10.18502/jost.v7i2.7007.

13. Baethge C, Goldbeck-Wood S, Mertens S. SANRA-a scale for the quality assessment of narrative review articles. Res Integr Peer Rev. 2019;4:5. doi: 10.1186/s41073-019-0064-8. [PubMed: 30962953]. [PubMed Central: PMC6434870].

14. Silva P, Rosa RC, Shimano AC, Defino HL. Effect of pilot hole on biomechanical and in vivo pedicle screw-bone interface. Eur Spine J. 2013;22(8):1829-36. doi: 10.1007/s00586-013-2810-9. [PubMed: 23653133]. [PubMed Central: PMC3731481].

15. Tsuang FY, Chen CH, Kuo YJ, Tseng WL, Chen YS, Lin CJ, et al. Percutaneous pedicle screw placement under single dimensional fluoroscopy with a designed pedicle finder-a technical note and case series. Spine J. 2017;17(9):1373-80. doi: 10.1016/j.spinee.2017.06.022. [PubMed: 28645672].

16. Hirano T, Hasegawa K, Takahashi HE, Uchiyama S, Hara T, Washio T, et al. Structural characteristics of the pedicle and its role in screw stability. Spine (Phila Pa 1976). 1997;22(21):2504-9. doi: 10.1097/00007632-199711010-00007. [PubMed: 9383856].

17. Kifune M, Panjabi MM, Liu W, Arand M, Vasavada A, Oxland T. Functional morphology of the spinal canal after endplate, wedge, and burst fractures. J Spinal Disord. 1997;10(6):457-66. [PubMed: 9438809].

18. Mikles MR, Stchur RP, Graziano GP. Posterior instrumentation for thoracolumbar fractures. J Am Acad Orthop Surg. 2004;12(6):424-35. doi: 10.5435/00124635-200411000-00007. [PubMed: 15615508].

19. Wu Y, Chen CH, Tsuang FY, Lin YC, Chiang CJ, Kuo YJ. The stability of long-segment and short-segment fixation for treating severe burst fractures at the thoracolumbar junction in osteoporotic bone: A finite element analysis. PLoS One. 2019;14(2):e0211676. doi: 10.1371/journal.pone.0211676. [PubMed: 30716122]. [PubMed Central: PMC6361511].
20. Hu X, Ma W, Chen J, Wang Y, Jiang W. Posterior short segment fixation including the fractured vertebra combined with kyphoplasty for unstable thoracolumbar osteoporotic burst fracture. BMC Musculoskelet Disord. 2020;21(1):566. doi: 10.1186/s12891-020-03576-9. [PubMed: 32825812]. [PubMed Central: PMC7442982].

21. Parker JW, Lane JR, Karaikovic EE, Gaines RW. Successful short-segment instrumentation and fusion for thoracolumbar spine fractures: A consecutive 41/2-year series. Spine (Phila Pa 1976). 2000;25(9):1157-70. doi: 10.1097/00007632-200005010-00018. [PubMed: 10788862].

22. McLain RF, Sparling E, Benson DR. Early failure of short-segment pedicle instrumentation for thoracolumbar fractures. A preliminary report. J Bone Joint Surg Am. 1993;75(2):162-7. doi: 10.2106/00004623-199302000-00002. [PubMed: 8423176].

23. Joshi D, Kakadiya G, Attar U. Time to revisit contraindications of vertebroplasty- A retrospective study of osteoporotic burst fracture operated with vertebroplasty and short segment fixation. N Am Spine Soc J. 2022;10:100111. doi: 10.1016/j.xnsj.2022.100111. [PubMed: 35399202]. [PubMed Central: PMC8987623].

24. Aly TA. short segment versus long segment pedicle screws fixation in management of thoracolumbar burst fractures: Meta-analysis. Asian Spine J. 2017;11(1):150-60. doi:

10.4184/asj.2017.11.1.150. [PubMed: 28243383]. [PubMed Central: PMC5326724].

25. Santoni BG, Hynes RA, McGilvray KC, Rodriguez-Canessa G, Lyons AS, Henson MA, et al. Cortical bone trajectory for lumbar pedicle screws. Spine J. 2009;9(5):366-73. doi: 10.1016/j.spinee.2008.07.008. [PubMed: 18790684].

26. Matsukawa K, Yato Y, Nemoto O, Imabayashi H, Asazuma T, Nemoto K. Morphometric measurement of cortical bone trajectory for lumbar pedicle screw insertion using computed tomography. J Spinal Disord Tech. 2013;26(6):E248-E253. doi: 10.1097/BSD.0b013e318288ac39. [PubMed: 23429319].

27. Radcliff KE, Kepler CK, Jakoi A, Sidhu GS, Rihn J, Vaccaro AR, et al. Adjacent segment disease in the lumbar spine following different treatment interventions. Spine J. 2013;13(10):1339-49. doi: 10.1016/j.spinee.2013.03.020. [PubMed: 23773433].

28. Huang HM, Chen CH, Lee HC, Chuang HY, Chen DC, Chu YT, et al. Minimal invasive surgical technique in midline lumbar inter-body fusion: A technique note. J Clin Neurosci. 2018;55: 103-8. doi: 10.1016/j.jocn.2018.06.033. [PubMed: 30257804].

29. Moore DC, Maitra RS, Farjo LA, Graziano GP, Goldstein SA. Restoration of pedicle screw fixation with an in situ setting calcium phosphate cement. Spine (Phila Pa 1976). 1997;22(15):1696-705. doi: 10.1097/00007632-199708010-00003. [PubMed: 9259778].

30. Wuisman PI, Van DM, Staal H, Van Royen BJ. Augmentation of (pedicle) screws with calcium apatite cement in patients with severe progressive osteoporotic spinal deformities: an innovative technique. Eur Spine J. 2000;9(6):528-33. doi:

10.1007/s005860000169. [PubMed: 11189922]. [PubMed Central: PMC3611429].

31. Chevalier Y, Matsuura M, Kruger S, Traxler H, Fleege C, Rauschmann M, et al. The effect of cement augmentation on pedicle screw fixation under various load cases: Results from a combined experimental, micro-CT, and micro-finite element analysis. Bone Joint Res. 2021;10(12):797-806. doi: 10.1302/2046-3758.1012.BJR-2020-0533.R1. [PubMed: 34894754]. [PubMed Central: PMC8696523].

32. Kolz JM, Freedman BA, Nassr AN. The value of cement augmentation in patients with diminished bone quality undergoing thoracolumbar fusion surgery: A review. Global Spine J. 2021;11(1_suppl):37S-44S. doi: 10.1177/2192568220965526. [PubMed: 33890808]. [PubMed Central: PMC8076807].

33. Frankel BM, D'Agostino S, Wang C. A biomechanical cadaveric analysis of polymethylmethacrylate-augmented pedicle screw fixation. J Neurosurg Spine. 2007;7(1):47-53. doi: 10.3171/SPI-07/07/047. [PubMed: 17633487].

34. Wang Y, Yang L, Li C, Sun H. A biomechanical study on cortical bone trajectory screw fixation augmented with cement in osteoporotic spines. Global Spine J. 2022;21925682211070826. doi: 10.1177/21925682211070826. [PubMed: 35042407].
35. Gomez FA, Herrera OM, Gaona JLV, Reyes CAF, Gutierrez MLC, Saenz LCM. Pulmonary cement embolism following transpedicular screws placement for thoracolumbar fractures. Surg Neurol Int. 2021;12:495. doi: 10.25259/SNI_817_2021. [PubMed: 34754545]. [PubMed Central: PMC8571380].

36. Chia-Jung H, Fon-Yih T. Pulmonary infarction and acute respiratory distress syndrome resulted from small amount of peripheral pulmonary cement embolism following cement-augmented pedicle screw fixation: A rare case and literature review. Neurosurg Cases Rev. 2022;5:100. doi: 10.23937/2643-4474/1710100.

37. Guo H, Huang H, Shao Y, Qin Q, Liang D, Zhang S, et al. Risk factors for pulmonary cement embolism (pce) after polymethylmethacrylate augmentation: Analysis of 32 PCE cases. Neurospine. 2021;18(4):806-15. doi: 10.14245/ns.2142616.308. [PubMed: 35000335]. [PubMed Central: PMC8752710].

38. Galibert P, Deramond H, Rosat P, Le GD. Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty. Neurochirurgie. 1987;33(2):166-8. [In French]. [PubMed: 3600949].

39. Buchbinder R, Osborne RH, Ebeling PR, Wark JD, Mitchell P, Wriedt C, et al. A randomized trial of vertebroplasty for painful osteoporotic vertebral fractures. N Engl J Med. 2009;361(6):557-68. doi: 10.1056/NEJMoa0900429. [PubMed: 19657121].

40. Kallmes DF, Comstock BA, Heagerty PJ, Turner JA, Wilson DJ, Diamond TH, et al. A randomized trial of vertebroplasty for osteoporotic spinal fractures. N Engl J Med. 2009;361(6):569-79. doi: 10.1056/NEJMoa0900563. [PubMed: 19657122]. [PubMed Central: PMC2930487].

41. Buchbinder R, Kallmes D, Glasziou P. Vertebroplasty versus conservative treatment for vertebral fractures. Lancet. 2010;376(9758):2070-1. doi: 10.1016/S0140-6736(10)62288-X. [PubMed: 21168045].

42. Yang W, Song J, Liang M, Cui H, Chen H, Yang J. Functional outcomes and new vertebral fractures in percutaneous vertebroplasty and conservative treatment of acute

symptomatic osteoporotic vertebral compression fractures.
World Neurosurg. 2019;131:e346-e352. doi:

10.1016/j.wneu.2019.07.153. [PubMed: 31356973].

43. Chen YC, Zhang L, Li EN, Ding LX, Zhang GA, Hou Y, et al. Unilateral versus bilateral percutaneous vertebroplasty for osteoporotic vertebral compression fractures in elderly patients: A meta-analysis. Medicine (Baltimore).

2019;98(8):e14317.doi:10.1097/MD.0000000000014317.

[PubMed: 30813133]. [PubMed Central: PMC6408113].

44. Nieuwenhuijse MJ, Van Erkel AR, Dijkstra PD. Cement leakage in percutaneous vertebroplasty for osteoporotic vertebral compression fractures: Identification of risk factors. Spine J. 2011;11(9):839-48. doi: 10.1016/j.spinee.2011.07.027. [PubMed: 21889417].

45. Zhan Y, Jiang J, Liao H, Tan H, Yang K. Risk factors for cement leakage after vertebroplasty or kyphoplasty: A meta-analysis of published evidence. World Neurosurg. 2017;101:633-42. doi: 10.1016/j.wneu.2017.01.124. [PubMed: 28192270].

46. Medical Advisory Secretariat. Balloon kyphoplasty: An evidence-based analysis. Ont Health Technol Assess Ser. 2004;4(12):1-45. [PubMed: 23074451]. [PubMed Central: PMC3387743].

47. Peh WC, Gilula LA, Peck DD. Percutaneous vertebroplasty for
severe osteoporotic vertebral body compression fractures.

Radiology. 2002;223(1):121-6. doi: 10.1148/radiol.2231010234.
[PubMed: 11930056].

48. Song BK, Eun JP, Oh YM. Clinical and radiological comparison of unipedicular versus bipedicular balloon kyphoplasty for the treatment of vertebral compression fractures. Osteoporos Int. 2009;20(10):1717-23. doi: 10.1007/s00198-009-0872-7. [PubMed: 19259608].

49. Ishiguro S, Kasai Y, Sudo A, Iida K, Uchida A. Percutaneous vertebroplasty for osteoporotic compression fractures using calcium phosphate cement. J Orthop Surg (Hong Kong). 2010;18(3):346-51. doi: 10.1177/230949901001800318. [PubMed: 21187549].

50. Pron G, Hwang M, Smith R, Cheung A, Murphy K. Cost-effectiveness studies of vertebral augmentation for osteoporotic vertebral fractures: A systematic review. Spine J. 2022;22(8):1356-71. doi: 10.1016/j.spinee.2022.02.013. [PubMed: 35257838].

51. Vanni D, Pantalone A, Bigossi F, Pineto F, Lucantoni D, Salini V. New perspective for third generation percutaneous vertebral augmentation procedures: Preliminary results at 12 months. J Craniovertebr Junction Spine. 2012;3(2):47-51. doi: 10.4103/0974-8237.116537. [PubMed: 24082683]. [PubMed Central: PMC3777311].

52. Rotter R, Schmitt L, Gierer P, Schmitz KP, Noriega D, Mittlmeier T, et al. Minimum cement volume required in vertebral body augmentation--A biomechanical study comparing the permanent SpineJack device and balloon kyphoplasty in traumatic fracture. Clin Biomech (Bristol , Avon).
2015;30(7):720-5.doi:10.1016/j.clinbiomech.2015.04.015.
[PubMed: 25971847].

53. Noriega D, Maestretti G, Renaud C, Francaviglia N, Ould-Slimane M, Queinnec S, et al. Clinical performance and safety of 108 spinejack implantations: 1-year results of a prospective multicentre single-arm registry study. Biomed Res Int. 2015;2015:173872. doi: 10.1155/2015/173872. [PubMed: 26844224]. [PubMed Central: PMC4710926].

54. Noriega DC, Rodriotaguez-Monsalve F, Ramajo R, Sanchez-Lite I, Toribio B, Ardura F. Correction to: Long-term safety and clinical performance of kyphoplasty and SpineJack(R) procedures in the treatment of osteoporotic vertebral compression fractures: A pilot, monocentric, investigator-initiated study. Osteoporos Int. 2019;30(3):647. doi: 10.1007/s00198-018-04825-3. [PubMed: 30659338].

55. Kruger A, Oberkircher L, Figiel J, Flossdorf F, Bolzinger F, Noriega DC, et al. Height restoration of osteoporotic vertebral compression fractures using different intravertebral reduction devices: A cadaveric study. Spine J. 2015;15(5):1092-8. doi: 10.1016/j.spinee.2013.06.094. [PubMed: 24200410].

56. Hegazy R, El-Mowafi H, Hadhood M, Hannout Y, Allam Y, Silbermann J. The outcome of radiofrequency kyphoplasty in the treatment of vertebral compression fractures in osteoporotic patients. Asian Spine J. 2019;13(3):459-67. doi:

10.31616/asj.2018.0124. [PubMed: 30685953]. [PubMed Central: PMC6547388].

57. Achatz G, Riesner HJ, Friemert B, Lechner R, Graf N, Wilke HJ. Biomechanical in vitro comparison of radiofrequency kyphoplasty and balloon kyphoplasty. Eur Spine J. 2017;26(12):3225-34. doi: 10.1007/s00586-017-5035-5. [PubMed: 28451858].
Files
IssueVol 9, No 1 (2023) QRcode
SectionReview Article
DOI https://doi.org/10.18502/jost.v9i1.12563
Keywords
Osteoporosis spinal fractures Review minimally Invasive Surgery Bone Cement

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Sie-Hiong T, Ming-Chi K, Yu‑Cheng Y, Meng-Yin H, Fon-Yih T. Minimally Invasive Fixation in Osteoporotic Vertebral Fractures: A Review Article. J Orthop Spine Trauma. 2023;9(1):9-13.