Pattern in Simultaneous Rupture of the Medial Collateral Ligament and Anterior Cruciate Ligament Assessed by Magnetic Resonance Imaging
Abstract
Background: Determining the exact details of complex traumatic injuries such as knee ligament rupture will be a crucial point in planning the surgical approach, which is determined through accurate imaging techniques such as magnetic resonance imaging (MRI). We aimed to evaluate the pattern of medial collateral ligament (MCL) rupture in patients who presented with simultaneous rupture of the anterior cruciate ligament (ACL) and MCL.
Methods: We evaluated knee MRI in 44 patients (25 women and 19 men, mean age: 38.6 ± 5.4 years) who suffered from clinically acute simultaneous ACL and MCL injuries. Meniscus status, MCL rupture patterns, and pivot bone bruise were analyzed.
Results: Concerning ACL rupture, 38.6% had a partial ACL rupture, and 61.4% had a complete rupture. The meniscus ruptured in 61.4%. The most common site of the meniscus rupture was related to the medial posterior horn (37.0%). The vertical type rupture was the most common (37.0%), followed by the horizontal rupture (29.6%). MCL rupture was present in all patients with grade 2 rupture revealed in 52.3%. Regarding the location of MCL ligament rupture, the highest ratio was found in the femoral site (65.9%). Semimembranosus rupture was observed in 2.3%. Pivot bone bruise was positive in 34.1%. Medial patellofemoral ligament (MPFL) rupture was also revealed in 68.2%. There was a significant relationship between the grade of rupture in the MCL and the presence of pivot bone bruise (P < 0.001)
Conclusion: Femoral detachment of MCL and posterior horn of medial meniscus (PHMM) are the most common sites of MCL injury and meniscus rupture in the context of ACL rupture. Besides, our results show a relevant influence of the extent of bone bruise on the grade of MCL rupture.
2. Sirisena D, Papi E, Tillett E. Clinical assessment of antero- medial rotational knee laxity: A systematic review. Knee Surg Sports Traumatol Arthrosc. 2017;25(4):1068-77. doi: 10.1007/s00167-016-4362-0. [PubMed: 27787588].
3. Hughes JD, Rauer T, Gibbs CM, Musahl V. Diagnosis and treatment of rotatory knee instability. J Exp Orthop. 2019;6(1):48. doi: 10.1186/s40634-019-0217-1. [PubMed: 31865518]. [PubMed Central: PMC6925612].
4. Forkel P, von Deimling C, Lacheta L, Imhoff FB, Foehr P, Willinger L, et al. Repair of the lateral posterior meniscal root improves stability in an ACL-deficient knee. Knee Surg Sports Traumatol Arthrosc. 2018;26(8):2302-9. doi: 10.1007/s00167-018- 4949-8. [PubMed: 29704113].
5. Hoshino Y, Miyaji N, Nishida K, Nishizawa Y, Araki D, Kanzaki N, et al. The concomitant lateral meniscus injury increased the pivot shift in the anterior cruciate ligament-injured knee. Knee Surg Sports Traumatol Arthrosc. 2019;27(2):646-51. doi: 10.1007/s00167-018-5209-7. [PubMed: 30310925].
6. Musahl V, Rahnemai-Azar AA, Costello J, Arner JW, Fu FH, Hoshino Y, et al. The influence of meniscal and anterolateral capsular injury on knee laxity in patients with anterior cruciate ligament injuries. Am J Sports Med. 2016;44(12): 3126-31. doi: 10.1177/0363546516659649. [PubMed: 27507843].
7. Kittl C, El-Daou H, Athwal KK, Gupte CM, Weiler A, Williams A, et al. The role of the anterolateral structures and the ACL in controlling laxity of the intact and ACL-deficient knee. Am J Sports Med. 2016;44(2):345-54. doi: 10.1177/0363546515614312. [PubMed: 26657572].
8. Zhang H, Sun Y, Han X, Wang Y, Wang L, Alquhali A, et al. Simultaneous reconstruction of the anterior cruciate ligament and medial collateral ligament in patients with chronic ACL-MCL lesions: A minimum 2-year follow-up study. Am J Sports Med. 2014;42(7):1675-81. doi: 10.1177/0363546514531394. [PubMed: 24769410].
9. Willinger L, Balendra G, Pai V, Lee J, Mitchell A, Jones M, et al. High incidence of superficial and deep medial collateral ligament injuries in 'isolated' anterior cruciate ligament ruptures: A long overlooked injury. Knee Surg Sports Traumatol Arthrosc. 2022;30(1):167-75. doi: 10.1007/s00167-021- 06514-x. [PubMed: 33661325]. [PubMed Central: PMC8800884].
10. Svantesson E, Hamrin SE, Alentorn-Geli E, Westin O, Sundemo D, Grassi A, et al. Increased risk of ACL revision with non- surgical treatment of a concomitant medial collateral ligament injury: A study on 19,457 patients from the Swedish National Knee Ligament Registry. Knee Surg Sports Traumatol Arthrosc. 2019;27(8):2450-9. doi: 10.1007/s00167-018-5237-3. [PubMed: 30374568]. [PubMed Central: PMC6656795].
11. Alm L, Krause M, Frosch KH, Akoto R. Preoperative medial knee instability is an underestimated risk factor for failure of revision ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2020;28(8):2458-67. doi: 10.1007/s00167-020-06133-y. [PubMed: 32621041]. [PubMed Central: PMC7429520].
12. Ball S, Stephen JM, El-Daou H, Williams A, Amis AA. The medial ligaments and the ACL restrain anteromedial laxity of the knee. Knee Surg Sports Traumatol Arthrosc. 2020;28(12):3700-8. doi: 10.1007/s00167-020-06084-4. [PubMed: 32504158]. [PubMed Central: PMC7669770].
13. Cavaignac E, Carpentier K, Pailhe R, Luyckx T, Bellemans J. The role of the deep medial collateral ligament in controlling rotational stability of the knee. Knee Surg Sports Traumatol Arthrosc. 2015;23(10):3101-7. doi: 10.1007/s00167-014-3095-1. [PubMed: 24894123].14. Wierer G, Milinkovic D, Robinson JR, Raschke MJ, Weiler A, Fink C, et al. The superficial medial collateral ligament is the major restraint to anteromedial instability of the knee. Knee Surg Sports Traumatol Arthrosc. 2021;29(2):405-16. doi: 10.1007/s00167-020-05947-0. [PubMed: 32277264].
15. Bisson LJ, Kluczynski MA, Hagstrom LS, Marzo JM. A prospective study of the association between bone contusion and intra-articular injuries associated with acute anterior cruciate ligament tear. Am J Sports Med. 2013;41(8):1801-7. doi: 10.1177/0363546513490649. [PubMed: 23744907].
16. Johnson DL, Urban WP, Caborn DN, Vanarthos WJ, Carlson CS. Articular cartilage changes seen with magnetic resonance imaging-detected bone bruises associated with acute anterior cruciate ligament rupture. Am J Sports Med. 1998;26(3):409-14. doi: 10.1177/03635465980260031101. [PubMed: 9617404].
17. Wittstein J, Vinson E, Garrett W. Comparison between sexes of bone contusions and meniscal tear patterns in noncontact anterior cruciate ligament injuries. Am J Sports Med. 2014;42(6):1401-7. doi: 10.1177/0363546514527415. [PubMed: 24668872].
18. Esdaille CJ, Marrero D, Laurencin CT. Selective unique signs of meniscus tears as visualized by magnetic resonance imaging. Clin J Sport Med. 2022;32(6):648-54. doi: 10.1097/JSM.0000000000000960. [PubMed: 34282063].
19. Campos JC, Chung CB, Lektrakul N, Pedowitz R, Trudell D, Yu J, et al. Pathogenesis of the Segond fracture: Anatomic and MR imaging evidence of an iliotibial tract or anterior oblique band avulsion. Radiology. 2001;219(2):381-6. doi: 10.1148/radiology.219.2.r01ma23381. [PubMed: 11323461].
20. Claes S, Bartholomeeusen S, Bellemans J. High prevalence of anterolateral ligament abnormalities in magnetic resonance images of anterior cruciate ligament-injured knees. Acta Orthop Belg. 2014;80(1):45-9. [PubMed: 24873084].
21. Flores DV, Smitaman E, Huang BK, Resnick DL. Segond fracture: An MR evaluation of 146 patients with emphasis on the avulsed bone fragment and what attaches to it. Skeletal Radiol. 2016;45(12):1635-47. doi: 10.1007/s00256-016-2479-3. [PubMed: 27662848].
22. Helito CP, Helito PVP, Costa HP, Demange MK, Bordalo- Rodrigues M. Assessment of the anterolateral ligament of the knee by magnetic resonance imaging in acute injuries of the anterior cruciate ligament. Arthroscopy. 2017;33(1):140-6. doi: 10.1016/j.arthro.2016.05.009. [PubMed: 27324971].
23. Rasenberg EI, Lemmens JA, van Kampen A, Schoots F, Bloo HJ, Wagemakers HP, et al. Grading medial collateral ligament injury: comparison of MR imaging and instrumented valgus- varus laxity test-device. A prospective double-blind patient study. Eur J Radiol. 1995;21(1):18-24. doi: 10.1016/0720- 048x(95)00660-i. [PubMed: 8654454].
24. Hayes CW, Coggins CA. Sports-related injuries of the knee: an approach to MRI interpretation. Clin Sports Med. 2006;25(4):659-79. doi: 10.1016/j.csm.2006.06.008. [PubMed: 16962421].
25. Hayes CW, Brigido MK, Jamadar DA, Propeck T. Mechanism-based pattern approach to classification of complex injuries of the knee depicted at MR imaging. Radiographics. 2000;20(Spec No):S121-34. doi: 10.1148/radiographics.20.suppl_1.g00oc21s121. [PubMed: 11046167].
26. Sanders TG, Medynski MA, Feller JF, Lawhorn KW. Bone contusion patterns of the knee at MR imaging: Footprint of the mechanism of injury. Radiographics. 2000;20(Spec No):S135-51. doi: 10.1148/radiographics.20.suppl_1.g00oc19s135. [PubMed: 11046168].
27. Kaplan PA, Gehl RH, Dussault RG, Anderson MW, Diduch DR. Bone contusions of the posterior lip of the medial tibial plateau (contrecoup injury) and associated internal derangements of the knee at MR imaging. Radiology. 1999;211(3):747-53. doi: 10.1148/radiology.211.3.r99jn30747. [PubMed: 10352601].
28. Bollier M, Smith PA. Anterior cruciate ligament and medial collateral ligament injuries. J Knee Surg. 2014;27(5):359-68. doi: 10.1055/s-0034-1381961. [PubMed: 24949985].
29. Aravindh P, Wu T, Chan CX, Wong KL, Krishna L. Association of compartmental bone bruise distribution with concomitant intra-articular and extra-articular injuries in acute anterior cruciate ligament tears after noncontact sports trauma. Orthop J Sports Med. 2018;6(4):2325967118767625. doi: 10.1177/2325967118767625. [PubMed: 29780838]. [PubMed Central: PMC5954320].
30. Viskontas DG, Giuffre BM, Duggal N, Graham D, Parker D, Coolican M. Bone bruises associated with ACL rupture: Correlation with injury mechanism. Am J Sports Med. 2008;36(5):927-33. doi: 10.1177/0363546508314791. [PubMed: 18354139].
31. Song GY, Zhang H, Wang QQ, Zhang J, Li Y, Feng H. Bone contusions after acute noncontact anterior cruciate ligament injury are associated with knee joint laxity, concomitant meniscal lesions, and anterolateral ligament abnormality. Arthroscopy. 2016;32(11):2331-41. doi: 10.1016/j.arthro.2016.03.015. [PubMed: 27177438].
32. Yoon KH, Yoo JH, Kim KI. Bone contusion and associated meniscal and medial collateral ligament injury in patients with anterior cruciate ligament rupture. J Bone Joint Surg Am. 2011;93(16):1510-8. doi: 10.2106/JBJS.J.01320. [PubMed: 22204006].
33. Grood ES, Noyes FR, Butler DL, Suntay WJ. Ligamentous and capsular restraints preventing straight medial and lateral laxity in intact human cadaver knees. J Bone Joint Surg Am. 1981;63(8):1257-69. [PubMed: 7287796].
34. Wijdicks CA, Ewart DT, Nuckley DJ, Johansen S, Engebretsen L, Laprade RF. Structural properties of the primary medial knee ligaments. Am J Sports Med. 2010;38(8):1638-46. doi: 10.1177/0363546510363465. [PubMed: 20675650].
35. Stephen JM, Halewood C, Kittl C, Bollen SR, Williams A, Amis AA. Posteromedial meniscocapsular lesions increase tibiofemoral joint laxity with anterior cruciate ligament deficiency, and their repair reduces laxity. Am J Sports Med. 2016;44(2):400-8. doi: 10.1177/0363546515617454. [PubMed: 26657852].
36. Tandogan RN, Taser O, Kayaalp A, Taskiran E, Pinar H, Alparslan B, et al. Analysis of meniscal and chondral lesions accompanying anterior cruciate ligament tears: relationship with age, time from injury, and level of sport. Knee Surg Sports Traumatol Arthrosc. 2004;12(4):262-70. doi: 10.1007/s00167-003-0398-z. [PubMed: 14504718].
37. Cipolla M, Scala A, Gianni E, Puddu G. Different patterns of meniscal tears in acute anterior cruciate ligament (ACL) ruptures and in chronic ACL-deficient knees. Classification, staging and timing of treatment. Knee Surg Sports Traumatol Arthrosc. 1995;3(3):130-4. doi: 10.1007/BF01565470. [PubMed: 8821266].
38. Paletta GA, Levine DS, O'Brien SJ, Wickiewicz TL, Warren RF. Patterns of meniscal injury associated with acute anterior cruciate ligament injury in skiers. Am J Sports Med. 1992;20(5):542-7. doi: 10.1177/036354659202000510. [PubMed: 1443322].
39. Yoo JC, Ahn JH, Lee SH, Yoon YC. Increasing incidence of medial meniscal tears in nonoperatively treated anterior cruciate ligament insufficiency patients documented by serial magnetic resonance imaging studies. Am J Sports Med. 2009;37(8):1478-83. doi: 10.1177/0363546509332432. [PubMed: 19359417].
40. Indelicato PA, Bittar ES. A perspective of lesions associated with ACL insufficiency of the knee. A review of 100 cases. Clin Orthop Relat Res. 1985;(198):77-80. [PubMed: 4028568].
41. Keene GC, Bickerstaff D, Rae PJ, Paterson RS. The natural history of meniscal tears in anterior cruciate ligament insufficiency. Am J Sports Med. 1993;21(5):672-9. doi: 10.1177/036354659302100506. [PubMed: 8238706].
42. Speer KP, Spritzer CE, Bassett FH 3rd, Feagin JA, Garrett WE. Osseous injury associated with acute tears of the anterior cruciate ligament. Am J Sports Med. 1992;20(4):382-9. doi: 10.1177/036354659202000403. [PubMed: 1415878].
Files | ||
Issue | Vol 9 No 4 (2023) | |
Section | Research Articles | |
DOI | https://doi.org/10.18502/jost.v9i4.13932 | |
Keywords | ||
Anterior Cruciate Ligament Bone Medial Collateral Ligament Magnetic Resonance Imaging Posterior Horn Medial Meniscus |
Rights and permissions | |
![]() |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |