Research Articles

Evaluation of Changes in Antioxidant Factors and Albumin Level Following the Administration of a Controlled-Releasing Drug Delivery System of Chitosan Hydrogel Loaded with Buprenorphine and Ketorolac in an Experimental Bone Defect in the Tibia of the Rat

Abstract

Background: In the present study, the effectiveness of a controlled-release drug delivery system of chitosan hydrogel loaded with ketorolac and buprenorphine on oxidative stress indices and albumin changes in the experimental bone defect model was considered. Methods: After creating an experimental defect in the right tibia of each rat, 5 groups, including (A) the control group that did not receive any pharmacological intervention, (B) the chitosan hydrogel receiving group, (C) the group receiving chitosan hydrogel loaded with buprenorphine, (D) the group receiving chitosan hydrogel loaded with ketorolac, and (E) the group receiving chitosan hydrogel loaded with ketorolac and buprenorphine, were considered. Serum concentrations of antioxidant factors and albumin levels were then measured on days 0, 3, 7, and 21 after surgery.

Results: In the control group, the maximum amount of oxidative stress and the maximum activity of antioxidant enzymes on the third and seventh days were compared between the 4 treatment groups. Moreover, the maximum amount of albumin on the third day was recorded and compared between the 4 other treatment groups. In 4 treatment groups, a significant decrease was observed in the mean of parameters related to oxidative stress compared to the control group, which was more noticeable in the group receiving ketorolac.

Conclusion: In the present study, the highest rate of control of oxidative stress conditions was observed in the group treated with the ketorolac-loaded chitosan hydrogel system, possibly due to its antioxidant properties and better control of inflammatory conditions caused by the use of chitosan and ketorolac in this treatment group.

1. Gasbarrini A, Grigolo B, Serra M, Baldini N, Scotlandi K, Gasbarrini A, et al. Generation of free radicals during anoxia and reoxygenation in perfused osteoblastlike cells. Clin Orthop Relat Res. 1997;(338):247-52. doi: 10.1097/00003086- 199705000-00033. [PubMed: 9170387].
2. Mody N, Parhami F, Sarafian TA, Demer LL. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med. 2001;31(4):509-19. doi: 10.1016/s0891- 5849(01)00610-4. [PubMed: 11498284].
3. Bai XC, Lu D, Bai J, Zheng H, Ke ZY, Li XM, et al. Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem Biophys Res Commun. 2004;314(1): 197-207. doi: 10.1016/j.bbrc.2003.12.073. [PubMed: 14715266].
4. Baek KH, Oh KW, Lee WY, Lee SS, Kim MK, Kwon HS, et al. Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures. Calcif Tissue Int. 2010;87(3):226-35. doi: 10.1007/s00223-010-9393-9. [PubMed: 20614110].
5. Koh JM, Lee YS, Kim YS, Kim DJ, Kim HH, Park JY, et al. Homocysteine enhances bone resorption by stimulation of osteoclast formation and activity through increased intracellular ROS generation. J Bone Miner Res. 2006;21(7):1003-11. doi: 10.1359/jbmr.060406. [PubMed: 16813521].
6. Wittrant Y, Gorin Y, Woodruff K, Horn D, Abboud HE, Mohan S, et al. High d(+)glucose concentration inhibits RANKL-induced osteoclastogenesis. Bone. 2008;42(6):1122-30. doi: 10.1016/j.bone.2008.02.006. [PubMed: 18378205]. [PubMed Central: PMC2696157].
7. Wauquier F, Leotoing L, Coxam V, Guicheux J, Wittrant Y. Oxidative stress in bone remodelling and disease. Trends Mol Med. 2009;15(10):468-77. doi: 10.1016/j.molmed.2009.08.004. [PubMed: 19811952].
8. Banfi G, Iorio EL, Corsi MM. Oxidative stress, free radicals and bone remodeling. Clin Chem Lab Med. 2008;46(11):1550-5. doi: 10.1515/CCLM.2008.302. [PubMed: 18847368].
9. Fatima G, Sharma VP, Das SK, Mahdi AA. Oxidative stress and antioxidative parameters in patients with spinal cord injury: implications in the pathogenesis of disease. Spinal Cord. 2015;53(1):3-6. doi: 10.1038/sc.2014.178. [PubMed: 25366528].
10. Ozougwu J. The role of reactive oxygen species and antioxidants in oxidative stress. International Journal of Pharmacy and Biosciences. 2016;3:1-8
11. Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigo R, et al. Characterization of mammalian selenoproteomes. Science. 2003;300(5624):1439-43. doi: 10.1126/science.1083516. [PubMed: 12775843].
12. Bains M, Hall ED. Antioxidant therapies in traumatic brain and spinal cord injury. Biochim Biophys Acta. 2012;1822(5):675-84. doi: 10.1016/j.bbadis.2011.10.017. [PubMed: 22080976]. [PubMed Central: PMC4134010].
13. Jia Z, Zhu H, Li J, Wang X, Misra H, Li Y. Oxidative stress in spinal cord injury and antioxidant-based intervention. Spinal Cord. 2012;50(4):264-74. doi: 10.1038/sc.2011.111. [PubMed: 21987065].
14. Doumas BT, Peters T. Serum and urine albumin: A progress report on their measurement and clinical significance. Clin Chim Acta. 1997;258(1):3-20. doi: 10.1016/s0009-8981(96)06446-7. [PubMed: 9049439].
15. Cross CE, van der Vliet A, O'Neill CA, Louie S, Halliwell B. Oxidants, antioxidants, and respiratory tract lining fluids. Environ Health Perspect. 1994;102 Suppl 10(Suppl 10):185-91. doi: 10.1289/ehp.94102s10185. [PubMed: 7705296]. [PubMed Central: PMC1566988].
16. Halliwell B. Albumin--an important extracellular antioxidant? Biochem Pharmacol. 1988;37(4):569-71. doi: 10.1016/0006- 2952(88)90126-8. [PubMed: 3277637].
17. Jacobsen C. Lysine residue 240 of human serum albumin is involved in high-affinity binding of bilirubin. Biochem J. 1978;171(2):453-9. doi: 10.1042/bj1710453. [PubMed: 656055]. [PubMed Central: PMC1183975].
18. Neuzil J, Stocker R. Bilirubin attenuates radical-mediated damage to serum albumin. FEBS Letters. 1993;331(3):281-4. doi: 10.1016/0014-5793(93)80353-V.
19. Giannoudis PV, Hak D, Sanders D, Donohoe E, Tosounidis T, Bahney C. Inflammation, bone healing, and anti- inflammatory drugs: An update. J Orthop Trauma. 2015;29(Suppl 12):S6-S9. doi: 10.1097/BOT.0000000000000465. [PubMed: 26584270].
20. Cunha TM, Souza GR, Domingues AC, Carreira EU, Lotufo CM, Funez MI, et al. Stimulation of peripheral kappa opioid receptors inhibits inflammatory hyperalgesia via activation of the PI3Kgamma/AKT/nNOS/NO signaling pathway. Mol Pain. 2012;8:10. doi: 10.1186/1744-8069-8-10. [PubMed: 22316281]. [PubMed Central: PMC3293001].
21. Norman PH, Daley MD, Lindsey RW. Preemptive analgesic effects of ketorolac in ankle fracture surgery. Anesthesiology. 2001;94(4):599-603. doi: 10.1097/00000542-200104000-00012. [PubMed: 11379679].
22. Fernandes E, Costa D, Toste SA, Lima JL, Reis S. In vitro scavenging activity for reactive oxygen and nitrogen species by nonsteroidal anti-inflammatory indole, pyrrole, and oxazole derivative drugs. Free Radic Biol Med. 2004; 37(11):1895-905. doi: 10.1016/j.freeradbiomed.2004.09.001. [PubMed: 15528048].
23. Parij N, Nagy AM, Neve J. Linear and non linear competition plots in the deoxyribose assay for determination of rate constants for reaction of nonsteroidal antiinflammatory drugs with hydroxyl radicals. Free Radic Res. 1995;23(6):571-9. doi: 10.3109/10715769509065278. [PubMed: 8574351].
24. Lindenhovius AL, Helmerhorst GT, Schnellen AC, Vrahas M, Ring D, Kloen P. Differences in prescription of narcotic pain medication after operative treatment of hip and ankle fractures in the United States and The Netherlands. J Trauma. 2009;67(1):160-4. doi: 10.1097/TA.0b013e31818c12ee. [PubMed: 19590328].
25. Flecknell P, Lofgren J, Pritchett-Corning KR, Whary MT. Preanesthesia, anesthesia, analgesia, and euthanasia. In: Anderson LC, Otto G, editors. Laboratory animal medicine. 3rd ed. Amsterdam, the Netherlands: Elsevier; 2015. p. 1135-200.
26. Bloms-Funke P, Gillen C, Schuettler AJ, Wnendt S. Agonistic effects of the opioid buprenorphine on the nociceptin/OFQ receptor. Peptides. 2000;21(7):1141-6. doi: 10.1016/s0196- 9781(00)00252-7. [PubMed: 10998549].
27. Koch T, Seifert A, Wu DF, Rankovic M, Kraus J, Borner C, et al. mu-opioid receptor-stimulated synthesis of reactive oxygen species is mediated via phospholipase D2. J Neurochem. 2009;110(4):1288-96. doi: 10.1111/j.1471-4159.2009.06217.x. [PubMed: 19519662].
28. Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2002;54(1):3-12. doi: 10.1016/s0169-409x(01)00239-3. [PubMed: 11755703].
29. Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev.
2001;101(7):1869-79. doi: 10.1021/cr000108x. [PubMed: 11710233].
30. Tessmar JK, Gopferich AM. Matrices and scaffolds for protein delivery in tissue engineering. Adv Drug Deliv Rev. 2007; 59 (4-5):274-91. doi: 10.1016/j.addr.2007.03.020. [PubMed: 17544542].
31. Javdani M, Barzegar A, Khosravian P, Hashemnia M. Evaluation of inflammatory response due to use of controlled release drug delivery system of chitosan hydrogel loaded with buprenorphine and ketorolac in rat with experimental proximal tibial epiphysis defect. J Invest Surg. 2022;35(5):996-1011. doi: 10.1080/08941939.2021.1989728. [PubMed: 34666588].
32. Kiani K, Rassouli A, Hosseinzadeh Ardakani Y, Akbari Javar H, Khanamani Falahatipour S, Khosraviyan P, et al. Preparation and evaluation of a thermosensitive liposomal hydrogel for sustained delivery of danofloxacin using mesoporous silica nanoparticles. Iran J Vet Med. 2016;10(4):295-305. doi: 10.22059/IJVM.2016.59731.
33. Javdani M, Ghorbani R, Hashemnia M. Histopathological evaluation of spinal cord with experimental traumatic injury following implantation of a controlled released drug delivery system of chitosan hydrogel loaded with selenium nanoparticle. Biol Trace Elem Res. 2021;199(7):2677-86. doi: 10.1007/s12011-020-02395-2. [PubMed: 32959339].
34. Esquivel AO, Sherman SS, Bir CA, Lemos SE. the interaction of intramuscular ketorolac (Toradol) and concussion in a rat model. Ann Biomed Eng. 2017;45(6):1581-8. doi: 10.1007/s10439- 017-1809-5. [PubMed: 28194658].
35. Raafat SN, Amin RM, Elmazar MM, Khattab MM, El-Khatib AS. The sole and combined effect of simvastatin and platelet rich fibrin as a filling material in induced bone defect in tibia of albino rats. Bone. 2018;117:60-9. doi: 10.1016/j.bone.2018.09.003. [PubMed: 30208342].
36. Takahashi M, Makino S, Kikkawa T, Osumi N. Preparation of rat serum suitable for mammalian whole embryo culture. J Vis Exp. 2014;(90):e51969. doi: 10.3791/51969. [PubMed: 25145996]. [PubMed Central: PMC4672955].
37. Burtis CA, Ashwood ER. Tietz textbook of clinical chemistry. 3rd ed. Philadelphia, PA: W. B. Saunders; 1999. p. 1654-5.
38. Duly EB, Grimason S, Grimason P, Barnes G, Trinick TR. Measurement of serum albumin by capillary zone electrophoresis, bromocresol green, bromocresol purple, and immunoassay methods. J Clin Pathol. 2003;56(10):780-1. doi: 10.1136/jcp.56.10.780. [PubMed: 14514785]. [PubMed Central: PMC1770085].
39. Bakhtiary Z, Shahrooz R, Ahmadi A, Soltanalinejad F. Protective effect of ethyl pyruvate on testicular histology and fertilization potential in cyclophosphamide treated mice. Vet Res Forum. 2020;11(1):7-13. doi: 10.30466/vrf.2018.91253.2047. [PubMed: 32537101]. [PubMed Central: PMC7282215].
40. Ozaras R, Tahan V, Aydin S, Uzun H, Kaya S, Senturk H. N- acetylcysteine attenuates alcohol-induced oxidative stress in the rat. World J Gastroenterol. 2003;9(1):125-8. doi: 10.3748/wjg.v9.i1.125. [PubMed: 12508366].
41. Adewole SO, Ojewole JA. Protective effects of Annona muricata Linn. (Annonaceae) leaf aqueous extract on serum lipid profiles and oxidative stress in hepatocytes of streptozotocin-treated diabetic rats. Afr J Tradit Complement Altern Med. 2008;6(1): 30-41. doi: 10.4314/ajtcam.v6i1.57071. [PubMed: 20162039].
42. Prodinger PM, Foehr P, Burklein D, Bissinger O, Pilge H, Kreutzer K, et al. Whole bone testing in small animals: Systematic characterization of the mechanical properties of different rodent bones available for rat fracture models. Eur J Med Res. 2018;23(1):8. doi: 10.1186/s40001-018-0307-z. [PubMed: 29444703].
43. Cacchioli A, Spaggiari B, Ravanetti F, Martini FM, Borghetti P, Gabbi C. The critical sized bone defect: Morphological study of bone healing. Ann Fac Medic Vet di Parma. 2007;26:97-110.
44. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44-84. doi: 10.1016/j.biocel.2006.07.001. [PubMed: 16978905].
45. Dumont RJ, Okonkwo DO, Verma S, Hurlbert RJ, Boulos PT, Ellegala DB, et al. Acute spinal cord injury, part I: Pathophysiologic mechanisms. Clin Neuropharmacol. 2001;24(5):254-64. doi: 10.1097/00002826-200109000-00002. [PubMed: 11586110].
46. Furst DE, Ulrich RW, Prakash S. Nonsteroidal anti-inflammatory drugs, disease-modifying antirheumatic drugs, nonopioid analgesics, and drugs used in gout. In: Katzung BG, editor. Basic and clinical pharmacology. 8th ed. New York, NY: McGraw-Hill;
2001. p. 596-624.
47. van der Vliet A, Bast A. Effect of oxidative stress on receptors and signal transmission. Chem Biol Interact. 1992;85(2-3): 95-116. doi: 10.1016/0009-2797(92)90055-p [PM: 1493612].
48. Fukai T, Ushio-Fukai M. Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxid Redox Signal. 2011;15(6):1583-606. doi: 10.1089/ars.2011.3999. [PubMed: 21473702].
49. Symons MC. Radicals generated by bone cutting and fracture. Free Radic Biol Med. 1996;20(6):831-5. doi: 10.1016/0891- 5849(95)02174-4. [PubMed: 8728031].
50. Yang S, Ries WL, Key LL. Nicotinamide adenine dinucleotide phosphate oxidase in the formation of superoxide in osteoclasts. Calcif Tissue Int. 1998;63(4):346-50. doi: 10.1007/s002239900538. [PubMed: 9744995].
51. Steinbeck MJ, Appel WH, Verhoeven AJ, Karnovsky MJ. NADPH- oxidase expression and in situ production of superoxide by osteoclasts actively resorbing bone. J Cell Biol. 1994;126(3): 765-72. doi: 10.1083/jcb.126.3.765. [PubMed: 8045939].
52. Akyol O, Herken H, Uz E, Fadillioglu E, Unal S, Sogut S, et al. The indices of endogenous oxidative and antioxidative processes in plasma from schizophrenic patients. The possible role of oxidant/antioxidant imbalance. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26(5):995-1005. doi: 10.1016/s0278- 5846(02)00220-8. [PubMed: 12369276].
53. Cornell CN, Lane JM. Newest factors in fracture healing. Clin Orthop Relat Res. 1992;(277):297-311. [PubMed: 1555354].
54. Simmons DJ. Fracture healing perspectives. Clin Orthop Relat Res. 1985;(200):100-13. [PubMed: 3905103].
55. Foschi D, Trabucchi E, Musazzi M, Castoldi L, Di MD, Radaelli E, et al. The effects of oxygen free radicals on wound healing. Int J Tissue React. 1988;10(6):373-9. [PubMed: 2475452].
56. Foschi D, Castoldi L, Radaelli E, Abelli P, Calderini G, Rastrelli A, et al. Hyaluronic acid prevents oxygen free-radical damage to granulation tissue: A study in rats. Int J Tissue React. 1990;12(6): 333-9. [PubMed: 1966392].
57. Gokturk E, Turgut A, Baycu C, Gunal I, Seber S, Gulbas Z. Oxygen-free radicals impair fracture healing in rats. Acta Orthop Scand. 1995;66(5):473-5. doi: 10.3109/17453679508995590. [PubMed: 7484133].
58. Garrett IR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR. Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest. 1990;85(3):632-9. doi: 10.1172/JCI114485. [PubMed: 2312718]. [PubMed Central: PMC296476].
59. Clausen F, Marklund N, Lewen A, Enblad P, Basu S, Hillered L. Interstitial F(2)-isoprostane 8-iso-PGF(2alpha) as a biomarker of oxidative stress after severe human traumatic brain injury. J Neurotrauma. 2012;29(5):766-75. doi: 10.1089/neu.2011. [PubMed: 21639729].
Files
IssueVol 9 No 3 (2023) QRcode
SectionResearch Articles
DOI https://doi.org/10.18502/jost.v9i3.13019
Keywords
Bone Frcature Healing Oxidative Stress Buprenorphine Ketorolac

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Javdani M, Khosravian P, Barzegar A, Hashemnia M. Evaluation of Changes in Antioxidant Factors and Albumin Level Following the Administration of a Controlled-Releasing Drug Delivery System of Chitosan Hydrogel Loaded with Buprenorphine and Ketorolac in an Experimental Bone Defect in the Tibia of the Rat. J Orthop Spine Trauma. 2023;9(3):110-9.