A Novel Parsimonious Method as Accurate as Extravagant Counterparts: Streolithographically-Modeled Patient-Specific Drill Guide Template for Subaxial Cervical Pedicle Screw Insertion
Abstract
Background: This study was conducted to develop a modified, parsimonious, faster to produce, easier to implement, and patient-specific drill guide template and also to examine if such a modification might affect the accuracy.
Methods: On two cadaveric spines, using reverse engineering, the orientation of pedicles, and safe corridors for pedicle screws were determined. A drill template was designed with a surface that was the inverse of the posterior vertebral surface. The drill template was manufactured using a rapid prototyping technique. To decrease the costs, the cervical spine corresponding prototypes were not manufactured. In contrary to previous studies, to preserve the stability from the posterior element, the templates were designed in such a way that removing interspinous and supraspinous ligaments were not necessary. The accuracy was evaluated by computed tomography (CT) images and classified into three grades of 0: correct placement, 1: malposition by less than a half screw diameter, and 2: malposition by more than a half screw diameter.
Results: Of 20 positions available, we inserted 19 screws, because the trajectory of one of the patient-specific drill guide templates was misdirected. The overall accuracy rate for cervical pedicle screw (CPS) placement was 84.2% (16 of 19). Safely inserted screws, combining the grades 0 and 1 categories, were as high as 100%. We observed no “unsafe screw placement”.
Conclusions: The total cost and the latency period before the operation was reduced and the interspinous and supraspinous ligaments were preserved. Good applicability and high accuracy was obtained for subaxial CPS (SCPS) insertion.
2. Ni B, Zhou F, Guo Q, Li S, Guo X, Xie N. Modified technique for C1-2 screw-rod fixation and fusion using autogenous bicortical iliac crest graft. Eur Spine J. 2012;21(1):156-64. doi: 10.1007/s00586-011-1958-4. [PubMed: 21823036]. [PubMed Central: PMC3252437].
3. Stulik J, Vyskocil T, Sebesta P, Kryl J. Atlantoaxial fixation using the polyaxial screw-rod system. Eur Spine J. 2007;16(4):479-84. doi: 10.1007/s00586-006-0241-6. [PubMed: 17051397]. [PubMed Central: PMC2229812].
4. Cheung JP, Luk KD. Complications of anterior and posterior cervical spine surgery. Asian Spine J. 2016;10(2):385-400. doi: 10.4184/asj.2016.10.2.385. [PubMed: 27114784]. [PubMed Central: PMC4843080].
5. Neo M, Fujibayashi S, Miyata M, Takemoto M, Nakamura T. Vertebral artery injury during cervical spine surgery: A survey of more than 5600 operations. Spine (Phila Pa 1976).
2008;33(7):779-85.doi:10.1097/BRS.0b013e31816957a7.
[PubMed: 18379405].
6. Wright NM, Lauryssen C. Vertebral artery injury in C1-2 transarticular screw fixation: Results of a survey of the AANS/CNS section on disorders of the spine and peripheral
nerves. American Association of Neurological Surgeons/Congress of Neurological Surgeons. J Neurosurg. 1998;88(4):634-40. doi: 10.3171/jns.1998.88.4.0634. [PubMed: 9525707].
7. Jeanneret B, Gebhard JS, Magerl F. Transpedicular screw fixation of articular mass fracture-separation: Results of an anatomical study and operative technique. J Spinal Disord. 1994;7(3):222-9. doi: 10.1097/00002517-199407030-00004. [PubMed: 7919645].
8. Ludwig SC, Kramer DL, Balderston RA, Vaccaro AR, Foley KF, Albert TJ. Placement of pedicle screws in the human cadaveric cervical spine: Comparative accuracy of three techniques. Spine (Phila Pa 1976). 2000;25(13):1655-67. doi: 10.1097/00007632-200007010-00009. [PubMed: 10870141].
9. Jones EL, Heller JG, Silcox DH, Hutton WC. Cervical pedicle screws versus lateral mass screws. Anatomic feasibility and biomechanical comparison. Spine (Phila Pa 1976). 1997;22(9):977-82. doi: 10.1097/00007632-199705010-00009. [PubMed: 9152447].
10. Rezcallah AT, Xu R, Ebraheim NA, Jackson T. Axial computed tomography of the pedicle in the lower cervical spine. Am J Orthop (Belle Mead NJ). 2001;30(1):59-61. [PubMed: 11198831].
11. Ludwig SC, Kramer DL, Vaccaro AR, Albert TJ. Transpedicle screw fixation of the cervical spine. Clin Orthop Relat Res. 1999;(359):77-88. doi: 10.1097/00003086-199902000-00009. [PubMed: 10078131].
12. Steinmann JC, Herkowitz HN, el-Kommos H, Wesolowski DP. Spinal pedicle fixation. Confirmation of an image-based technique for screw placement. Spine (Phila Pa 1976). 1993;18(13):1856-61. [PubMed: 8235872].
13. Hojo Y, Ito M, Suda K, Oda I, Yoshimoto H, Abumi K. A multicenter study on accuracy and complications of freehand placement of cervical pedicle screws under lateralfluoroscopy in different pathological conditions: CT-based evaluation of more than 1,000 screws. Eur Spine J. 2014;23(10):2166-74. doi: 10.1007/s00586-014-3470-0. [PubMed: 25047653].
14. Ishikawa Y, Kanemura T, Yoshida G, Matsumoto A, Ito Z, Tauchi R, et al. Intraoperative, full-rotation, three-dimensional image (O-arm)-based navigation system for cervical pedicle screw insertion. J Neurosurg Spine. 2011;15(5):472-8. doi: 10.3171/2011.6.SPINE10809. [PubMed: 21761967].
15. Singer G. Occupational radiation exposure to the surgeon. J Am Acad Orthop Surg. 2005;13(1):69-76. doi: 10.5435/00124635-200501000-00009. [PubMed: 15712984].
16. Richter M, Cakir B, Schmidt R. Cervical pedicle screws: Conventional versus computer-assisted placement of cannulated screws. Spine (Phila Pa 1976). 2005;30(20):2280-7. doi: 10.1097/01.brs.0000182275.31425.cd. [PubMed: 16227890].
17. Van de Kelft E, Costa F, Van der Planken D, Schils F. A prospective multicenter registry on the accuracy of pedicle screw placement in the thoracic, lumbar, and sacral levels with the use of the O-arm imaging system and StealthStation Navigation. Spine (Phila Pa 1976). 2012;37(25):E1580-E1587. doi: 10.1097/BRS.0b013e318271b1fa. [PubMed: 23196967].
18. Izatt MT, Thorpe PL, Thompson RG, D'Urso PS, Adam CJ, Earwaker JW, et al. The use of physical biomodelling in complex spinal surgery. Eur Spine J. 2007;16(9):1507-18. doi: 10.1007/s00586-006-0289-3. [PubMed: 17846803]. [PubMed Central: PMC2200746].
19. Sherekar RM, Pawar AN. Application of biomodels for surgical planning by using rapid prototyping: A review & case studies. Int J Innov Res Adv Eng. 2014;1(6):263-71.
20. Paiva WS, Amorim R, Bezerra DA, Masini M. Aplication of the stereolithography technique in complex spine surgery. Arq Neuropsiquiatr. 2007;65(2B):443-5. doi: 10.1590/s0004-282x2007000300015. [PubMed: 17665012].
21. Popescu D, Anania DF, Amza CG, CICIC DT. Design and rapid manufacturing of patient-specific spinal surgical guides: A survey. Proceedings in Manufacturing Systems. 2012;7(2):115-20.
22. Moser M, Farshad M, Farshad-Amacker NA, Betz M, Spirig JM. Accuracy of patient-specific template-guided versus freehand cervical pedicle screw placement from C2 to C7: A Randomized Cadaveric Study. World Neurosurg. 2019;126:e803-e813. doi: 10.1016/j.wneu.2019.02.152. [PubMed: 30862583].
23. Lu S, Xu YQ, Lu WW, Ni GX, Li YB, Shi JH, et al. A novel patient-specific navigational template for cervical pedicle screw placement. Spine (Phila Pa 1976). 2009;34(26):E959-E966. doi: 10.1097/BRS.0b013e3181c09985. [PubMed: 20010385].
24. Ryken TC, Owen BD, Christensen GE, Reinhardt JM. Image-based drill templates for cervical pedicle screw placement. J Neurosurg Spine. 2009;10(1):21-6. doi: 10.3171/2008.9.SPI08229. [PubMed: 19119928].
25. Lu S, Xu YQ, Chen GP, Zhang YZ, Lu D, Chen YB, et al. Efficacy and accuracy of a novel rapid prototyping drill template for cervical pedicle screw placement. Comput Aided Surg. 2011;16(5):240-8. doi: 10.3109/10929088.2011.605173. [PubMed: 21838535].
26. Kawaguchi Y, Nakano M, Yasuda T, Seki S, Hori T, Kimura T. Development of a new technique for pedicle screw and Magerl screw insertion using a 3-dimensional image guide. Spine (Phila Pa 1976). 2012;37(23):1983-8. doi: 10.1097/BRS.0b013e31825ab547. [PubMed: 22531473].
27. Kaneyama S, Sugawara T, Sumi M. Safe and accurate midcervical pedicle screw insertion procedure with the patient-specific screw guide template system. Spine (Phila Pa 1976).2015;40(6):E341-E348.doi: 10.1097/BRS.0000000000000772. [PubMed: 25584951].
28. Yu Z, Zhang G, Chen X, Chen X, Wu C, Lin Y, et al. Application of a novel 3D drill template for cervical pedicle screw tunnel design: A cadaveric study. Eur Spine J. 2017;26(9):2348-56. doi: 10.1007/s00586-017-5118-3. [PubMed: 28601990].
29. Sugawara T, Higashiyama N, Kaneyama S, Takabatake M, Watanabe N, Uchida F, et al. Multistep pedicle screw insertion procedure with patient-specific lamina fit-and-lock templates for the thoracic spine: Clinical article. J Neurosurg Spine. 2013;19(2):185-90. doi: 10.3171/2013.4.SPINE121059.[PubMed: 23705628].
31. Sugawara T, Kaneyama S, Higashiyama N, Tamura S, Endo T, Takabatake M, et al. Prospective Multicenter Study of a
Multistep Screw Insertion Technique Using Patient-Specific Screw Guide Templates for the Cervical and Thoracic Spine.Spine (Phila Pa 1976). 2018;43(23):1685-94.
10.1097/BRS.0000000000002810. [PubMed: 30045345].
32. Burleson J, DiPaola C. 3D Printing in spine surgery. In: Dipaola M, Wodajo FM, Editors. 3D Printing in orthopaedic
surgery. Philadelphia, PA: Elsevier Health Sciences; 2018. p. 105-22.
32. Bundoc RC, Delgado GG, Grozman SA. A Novel patient-specific drill guide template for pedicle screw insertion into the subaxial cervical spine utilizing stereolithographic
modelling: An in vitro study. Asian Spine J. 2017;11(1):4-14. doi: 10.4184./asj.2017.11.1.4. [PubMed: 28243363]. [PubMed Central: PMC5326730].
33. Makan P. The posterior ligament complex in cervical spine trauma. Orthopaedic Proceedings. 2002;84(Suppl I):83.
Files | ||
Issue | Vol 4, No 3 (2018) | |
Section | Research Articles | |
DOI | https://doi.org/10.18502/jost.v4i3.3076 | |
Keywords | ||
Cervical Vertebra; Spine; Pedicle Screws; Instrumentation Patient-Specific Modeling |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |